Activation of PPARγ in Myeloid Cells Promotes Lung Cancer Progression and Metastasis

نویسندگان

  • Howard Li
  • Amber L. Sorenson
  • Joanna Poczobutt
  • Jay Amin
  • Teresa Joyal
  • Timothy Sullivan
  • Joseph T. Crossno
  • Mary C. M. Weiser-Evans
  • Raphael A. Nemenoff
چکیده

Activation of peroxisome proliferator-activated receptor-γ (PPARγ) inhibits growth of cancer cells including non-small cell lung cancer (NSCLC). Clinically, use of thiazolidinediones, which are pharmacological activators of PPARγ is associated with a lower risk of developing lung cancer. However, the role of this pathway in lung cancer metastasis has not been examined well. The systemic effect of pioglitazone was examined in two models of lung cancer metastasis in immune-competent mice. In an orthotopic model, murine lung cancer cells implanted into the lungs of syngeneic mice metastasized to the liver and brain. As a second model, cancer cells injected subcutaneously metastasized to the lung. In both models systemic administration of pioglitazone increased the rate of metastasis. Examination of tissues from the orthotopic model demonstrated increased numbers of arginase I-positive macrophages in tumors from pioglitazone-treated animals. In co-culture experiments of cancer cells with bone marrow-derived macrophages, pioglitazone promoted arginase I expression in macrophages and this was dependent on the expression of PPARγ in the macrophages. To assess the contribution of PPARγ in macrophages to cancer progression, experiments were performed in bone marrow-transplanted animals receiving bone marrow from Lys-M-Cre+/PPARγ(flox/flox) mice, in which PPARγ is deleted specifically in myeloid cells (PPARγ-Mac(neg)), or control PPARγ(flox/flox) mice. In both models, mice receiving PPARγ-Mac(neg) bone marrow had a marked decrease in secondary tumors which was not significantly altered by treatment with pioglitazone. This was associated with decreased numbers of arginase I-positive cells in the lung. These data support a model in which activation of PPARγ may have opposing effects on tumor progression, with anti-tumorigenic effects on cancer cells, but pro-tumorigenic effects on cells of the microenvironment, specifically myeloid cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MicroRNA-130b promotes lung cancer progression via PPARγ/VEGF-A/BCL-2-mediated suppression of apoptosis

BACKGROUND The prognosis of non-small-cell lung cancer (NSCLC) is poor yet mechanistic understanding and therapeutic options remain limited. We investigated the biological and clinical significance of microRNA-130b and its relationship with apoptosis in NSCLC. METHODS The level of microRNA-130b in relationship with the expression of PPARγ, VEGF-A, BCL-2 and apoptosis were analyzed in 91 lung ...

متن کامل

Licensing of myeloid cells promotes central nervous system autoimmunity and is controlled by peroxisome proliferator-activated receptor γ.

During central nervous system autoimmunity, interactions between infiltrating immune cells and brain-resident cells are critical for disease progression and ultimately organ damage. Here, we demonstrate that local cross-talk between invading autoreactive T cells and auto-antigen-presenting myeloid cells within the central nervous system results in myeloid cell activation, which is crucial for d...

متن کامل

Myeloid heme oxygenase-1 promotes metastatic tumor colonization in mice

Heme oxygenase-1 (HO-1) is a heme degradation enzyme with antioxidant and immune-modulatory functions. HO-1 promotes tumorigenesis by enhancing tumor cell proliferation and invasion. Whether HO-1 has an effect on cancer progression through stromal compartments is less clear. Here we show that the growth of tumor engrafted subcutaneously in syngeneic mice was not affected by host HO-1 expression...

متن کامل

Targeting inflammasome/IL-1 pathways for cancer immunotherapy

The inflammatory microenvironment has been shown to play important roles in various stages of tumor development including initiation, growth, and metastasis. The inflammasome is a critical innate immune pathway for the production of active IL-1β, a potent inflammatory cytokine. Although inflammasomes are essential for host defense against pathogens and contribute to autoimmune diseases, their r...

متن کامل

Lysosomal acid lipase in cancer

Lysosomal Acid Lipase Regulates Myeloid-derived Suppressor Cells to Control Cancer Cell Proliferation and Metastasis. Inflammation critically contributes to cancer growth and metastasis, in which myeloid-derived suppressor cells (MDSCs) are an important participant. MDSCs are known to suppress immune surveillance to promote tumorigenesis [1]. Lysosomal acid lipase (LAL), a critical enzyme in co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2011